Skip to content

Python Cheat Sheet - Numpy

Name Description Example
a.shape The shape attribute of NumPy array a keeps a tuple of integers. Each integer describes the number of elements of the axis. a = np.array([[1,2],[1,1],[0,0]])
print(np.shape(a)) # (3, 2)
a.ndim The ndim attribute is equal to the length of the shape tuple. print(np.ndim(a)) # 2
* The asterisk (star) operator performs the Hadamard product, i.e., multiplies two matrices with equal shape element-wise. a = np.array([[2, 0], [0, 2]])
b = np.array([[1, 1], [1, 1]])
print(a*b) # [[2 0] [0 2]]
np.matmul(a,b) The standard matrix multiplication operator. Equivalent to the @ operator. print(np.matmul(a,b))
# [[2 2] [1 1]]
np.arange([start, ]stop, [step, ]) Creates a new 1D numpy array with evenly spaced values print(np.arange(0,10,2))
# [0 2 4 6 8]
np.linspace(start, stop, num=50) Creates a new 1D numpy array with evenly spread elements within the given interval print(np.linspace(0,10,3))
# [ 0. 5. 10.]
np.average(a) Averages over all the values in the numpy array a = np.array([[2, 0], [0, 2]])
print(np.average(a)) # 1.0
<slice> = <val> Replace the <slice> as selected by the slicing operator with the value <val>. a = np.array([1, 0, 0, 0])
a[:2] = 2
print(a) # [2 2 0 0]
np.var(a) Calculates the variance of a numpy array. a = np.array([2, 6])
print(np.var(a)) # 4.0
np.std(a) Calculates the standard deviation of a numpy array print(np.std(a)) # 2.0
np.diff(a) Calculates the difference between subsequent values in NumPy array a fibs = np.array([0, 1, 1, 2, 3, 5])
print(np.diff(fibs, n=1))
np.cumsum(a) Calculates the cumulative sum of the elements in NumPy array a. print(np.cumsum(np.arange(5)))
# [ 0 1 3 6 10]
np.sort(a) Creates a new NumPy array with the values from a (ascending). a = np.array([10,3,7,1,0])
print(np.sort(a))
# [ 0 1 3 7 10]
np.argsort(a) Returns the indices of a NumPy array so that the indexed values would be sorted. print(np.argsort(a))
# [4 3 1 2 0]
np.max(a) Returns the maximal value of NumPy array a. print(np.max(a)) # 10
np.argmax(a) Returns the index of the element with maximal value in the NumPy array a. print(np.argmax(a)) # 0
np.nonzero(a) Returns the indices of the nonzero elements in NumPy array a. print(np.nonzero(a))
# [0 1 2 3]

Reference Image: numpy