Skip to content

Python Cheat Sheet - Data Types

Type Description Example
Boolean The Boolean data type is a truth value, either True or False.
The Boolean operators ordered by priority:
not x → "if x is False, then x, else y"
x and y → "if x is False, then x, else y"
x or y → "if x is False, then y, else x"
These comparison operators evaluate to True:
1 < 2 and 0 <= 1 and 3 > 2 and 2 >=2 and 1 == 1 and 1 != 0
## 1. Boolean Operations
x, y = True, False
print(x and not y) # True
print(not x and y or x) # True

## 2. If condition evaluates to False
if None or 0 or 0.0 or "" or [] or {} or set():
# None, 0, 0.0, empty strings, or empty
# container types are evaluated to False
print("Dead code") # Not reached
Integer, Float An integer is a positive or negative number without floating point (e.g. 3). A float is a positive or negative number with floating point precision (e.g. 3.14159265359).
The '//' operator performs integer division. The result is an integer value that is rounded towards the smaller integer number (e.g. 3 // 2 == 1).
## 3. Arithmetic Operations
x, y = 3, 2
print(x + y) # = 5
print(x - y) # = 1
print(x * y) # = 6
print(x / y) # = 1.5
print(x // y) # = 1
print(x % y) # = 1s
print(-x) # = -3
print(abs(-x)) # = 3
print(int(3.9)) # = 3
print(float(3)) # = 3.0
print(x ** y) # = 9
String Python Strings are sequences of characters.
The four main ways to create strings are the following.
1. Single quotes
'Yes'
2. Double quotes
"Yes"
3. Triple quotes (multi-line)
"""Yes"""
4. String method
str(5) == '5'
5. Concatenation
"Ma" + "hatma" # 'Mahatma'
These are whitespace characters in strings.
• Newline \n
• Space \s
• Tab \t
## 4. Indexing and Slicing
s = "The youngest pope was 11 years old"
print(s[0]) # 'T'
print(s[1:3]) # 'he'
print(s[-3:-1]) # 'ol'
print(s[-3:]) # 'old'
x = s.split()
print(x[-3] + " " + x[-1] + " " + x[2] + "s")
# 'old popes'

## 5. Most Important String Methods
y = " This is lazy\t\n "
print(y.strip()) # Remove whitespace: 'This is lazy'
print("DdrEe".lower()) # Lowercase: 'ddree'
print("Attention".upper()) # Uppercase: 'ATTENTION'
print("smartphone".startswith("smart")) # True
print("smartphone".endswith("phone")) # True
print("another".find("other")) # Match index: 2
print("cheat".replace("ch", "m")) # 'meat'
print(','.join(["F", "B", "I"])) # 'F,B,I'
print(len("Rumpelstiltskin")) # String length: 15
print("ear" in "earth") # Contains: True
List A container data type that stores a sequence of elements. Unlike strings, lists are mutable: modification possible. l = [1, 2, 2]
print(len(l)) # 3
Adding elements Add elements to a list with (i) append, (ii) insert, or (iii) list concatenation. The append operation is very fast. [1, 2, 2].append(4) # [1, 2, 2, 4]
[1, 2, 4].insert(2,2) # [1, 2, 2, 4]
[1, 2, 2] + [4] # [1, 2, 2, 4]
Removal Removing an element can be slower. [1, 2, 2, 4].remove(1) # [2, 2, 4]
Reversing This reverses the order of list elements. [1, 2, 3].reverse() # [3, 2, 1]
Sorting Sorts a list. The computational complexity of sorting is O(n log n) for n list elements. [2, 4, 2].sort() # [2, 2, 4]
Indexing Finds the first occurrence of an element in the list & returns its index. Can be slow as the whole list is traversed. [2, 2, 4].index(2) # index of element 4 is "2"
[2, 4, 2].index(2,1) # index of element 2 after pos 1 is "2"
Stack Python lists can be used intuitively as stack via the two list operations append() and pop(). stack = [3]
stack.append(42) # [3, 42]
stack.pop() # 42 (stack: [3])
stack.pop() # 3 (stack: [])
Set A set is an unordered collection of elements. Each can exist only once. basket = {'apple', 'eggs', 'banana', 'orange'}
same set = {'apple', 'eggs', 'banana', 'orange'}
Dictionary The dictionary is a useful data structure for storing (key, value) pairs. calories = {'apple': 52, 'banana': 89, 'choco': 546}
Reading and writing elements Read and write elements by specifying the key within the brackets. Use the keys() and values() functions to access all keys and values of the dictionary. print(calories['apple'] < calories['choco']) # True
calories['capu'] = 74
print(calories['banana'] < calories['capu']) # False
print('apple' in calories.keys()) # True
print(52 in calories.values()) # True
Dictionary Looping You can loop over the (key, value) pairs of a dictionary with the items() method. for k, v in calories.items():
print(k) if v > 500 else None # 'chocolate'
Membership operator Check with the 'in' keyword whether the set, list, or dictionary contains an element. Set containment is faster than list containment. basket = {'apple', 'eggs', 'banana', 'orange'}
print('eggs' in basket) # True
print('mushroom' in basket) # False
List and Set Comprehension List comprehension is the concise Python way to create lists. Use brackets plus an expression, followed by a for clause. Close with zero or more for or if clauses. Set comprehension is similar to list comprehension. # List comprehension
l = [(i + " " + x) for x in ['Alice', 'Bob', 'Pete']]
print(l) # ['Hi Alice', 'Hi Bob', 'Hi Pete']
l2 = [(x + y) for x in range(3) for y in range(3) if x+y != 0]
print(l2) # [0, 2, 2]
# Set comprehension
squares = {x**2 for x in [0,2,4] if x < 4 } # {0, 4}

Reference Image: basic datatype complex datatype